KronLinInv
Quick overview
Kronecker-product-based linear inversion of geophysical (or other kinds of) data under Gaussian and separability assumptions. The code computes the posterior mean model and the posterior covariance matrix (or subsets of it) in an efficient manner (parallel algorithm) taking into account 3-D correlations both in the model parameters and in the observed data.
If you use this code for research or else, please cite the related paper:
Andrea Zunino, Klaus Mosegaard (2019), An efficient method to solve large linearizable inverse problems under Gaussian and separability assumptions, Computers & Geosciences. ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2018.09.005.
See the above mentioned paper for a detailed description.
Installation
To install the package simple enter into the package manager mode in Julia by typing "]
" at the REPL prompt and then use add
, i.e.,
(v1.2) pkg> add KronLinInv
The package will be automatically downloaded from the web and installed.
Theoretical background
KronLinInv solves the linear inverse problem with Gaussian uncertainties represented by the following objective function
\[S( \mathbf{m}) = \frac{1}{2} ( \mathbf{G} \mathbf{m} - \mathbf{d}_{\sf{obs}} )^{\sf{T}} \mathbf{C}^{-1}_{\rm{D}} ( \mathbf{G} \mathbf{m} - \mathbf{d}_{\sf{obs}} ) + \frac{1}{2} ( \mathbf{m} - \mathbf{m}_{\sf{prior}} )^{\sf{T}} \mathbf{C}^{-1}_{\rm{M}} ( \mathbf{m} - \mathbf{m}_{\sf{prior}} )\]
under the following separability conditions (for a 3-way decomposition):
\[\mathbf{C}_{\rm{M}} = \mathbf{C}_{\rm{M}}^{\rm{x}} \otimes \mathbf{C}_{\rm{M}}^{\rm{y}} \otimes \mathbf{C}_{\rm{M}}^{\rm{z}} , \quad \mathbf{C}_{\rm{D}} = \mathbf{C}_{\rm{D}}^{\rm{x}} \otimes \mathbf{C}_{\rm{D}}^{\rm{y}} \otimes \mathbf{C}_{\rm{D}}^{\rm{z}} \quad \textrm{ and } \quad \mathbf{G} = \mathbf{G}^{\rm{x}} \otimes \mathbf{G}^{\rm{y}} \otimes \mathbf{G}^{\rm{z}} \, .\]
From the above, the posterior covariance matrix is given by
\[ \mathbf{\widetilde{C}}_{\rm{M}} = \left( \mathbf{G}^{\sf{T}} \, \mathbf{C}^{-1}_{\rm{D}} \, \mathbf{G} + \mathbf{C}^{-1}_{\rm{M}} \right)^{-1}\]
and the center of posterior gaussian is
\[ \mathbf{\widetilde{m}} = \mathbf{m}_{\rm{prior}}+ \mathbf{\widetilde{C}}_{\rm{M}} \, \mathbf{G}^{\sf{T}} \, \mathbf{C}^{-1}_{\rm{D}} \left(\mathbf{d}_{\rm{obs}} - \mathbf{G} \mathbf{m}_{\rm{prior}} \right) \, .\]
KronLinInv solves the inverse problem in an efficient manner, with a very low memory imprint, suitable for large problems where many model parameters and observations are involved.
The paper describes how to obtain the solution to the above problem as shown hereafter. First the following matrices are computed
\[ \mathbf{U}_1 \mathbf{\Lambda}_1 \mathbf{U}_1^{-1} = \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1} \mathbf{G}^{\rm{x}}\]
\[\mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{-1} = \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1} \mathbf{G}^{\rm{y}}\]
\[\mathbf{U}_3 \mathbf{\Lambda}_3 \mathbf{U}_3^{-1} = \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1} \mathbf{G}^{\rm{z}} \, .\]
The posterior covariance is then expressed as
\[\mathbf{\widetilde{C}}_{\rm{M}} = \left( \mathbf{U}_1 \otimes \mathbf{U}_2 \otimes \mathbf{U}_3 \right) \big( \mathbf{I} + \mathbf{\Lambda}_1 \! \otimes \! \mathbf{\Lambda}_2 \! \otimes \! \mathbf{\Lambda}_3 \big)^{-1} \big( \mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} \otimes \mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} \otimes \mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} \big) \, .\]
and the posterior mean model as
\[\mathbf{\widetilde{m}} = \mathbf{m}_{\rm{prior}} + \Big[ \! \left( \mathbf{U}_1 \otimes \mathbf{U}_2 \otimes \mathbf{U}_3 \right) \big( \mathbf{I} + \mathbf{\Lambda}_1\! \otimes \! \mathbf{\Lambda}_2 \! \otimes\! \mathbf{\Lambda}_3 \big)^{-1} \\ \times \Big( \left( \mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1} \right) \! \otimes \left( \mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1} \right) \! \\ \otimes \left( \mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1} \right) \Big) \Big] \\ \times \Big( \mathbf{d}_{\rm{obs}} - \big( \mathbf{G}^{\rm{x}} \otimes \mathbf{G}^{\rm{y}} \otimes \mathbf{G}^{\rm{z}} \big) \, \mathbf{m}_{\rm{prior}} \Big) \, .\]
These last two formulae are those used by the KronLinInv algorithm.
Several function are exported by the module KronLinInv:
kli_calcfactors
: Computes the factors necessary to solve the inverse problemkli_posteriormean
: Computes the posterior mean model using the previously computed "factors" withkli_calcfactors
.kli_blockposteriorcov
: Computes a block (or all) of the posterior covariance using the previously computed "factors" withkli_calcfactors
.kli_bandpostcov
: NOT YET IMPLEMENTED! Computes a band of the posterior covariance the previously computed "factors" withkli_calcfactors
.
Usage examples
The input needed is represented by the set of three covariance matrices of the model parameters, the three covariances of the observed data, the three forward model operators, the observed data (a vector) and the prior model (a vector). The first thing to compute is always the set of "factors" using the function [`klicalcfactors](@ref). Finally, the posterior mean (see [
kliposteriormean`](@ref KronLinInv.kliposteriormean)) and/or covariance (or part of it) can be computed (see kli_blockposteriorcov
).
2D example
An example of how to use the code for 2D problems is shown in the following. Notice that the code is written for a 3D problem, however, by setting some of the matrices as identity matrices with size of 1$\times$1, a 2D problem can be solved without much overhead.
Creating a test problem
First, we create some input data to simulate a real problem.
# set the sizes of the problem
nx = 1
ny = 20
nz = 30
nxobs = 1
nyobs = 18
nzobs = 24
We then construct some covariance matrices and a forward operator. The "first" covariance matrices for model parameters ($\mathbf{C}_{\rm{M}}^{\rm{x}} \, , \mathbf{C}_{\rm{M}}^{\rm{y}} \, , \mathbf{C}_{\rm{M}}^{\rm{z}}$) and observed data ($\mathbf{C}_{\rm{D}}^{\rm{x}} \, , \mathbf{C}_{\rm{D}}^{\rm{y}} \, , \mathbf{C}_{\rm{D}}^{\rm{z}}$) are simply an identity matrix of shape 1$\times$1, since it is a 2D problem. The forward relation (forward model) is created from three operators ($\mathbf{G}^{\rm{x}} \, , \mathbf{G}^{\rm{y}} \, , \mathbf{G}^{\rm{z}}$). Remark: the function mkCovSTAT
used in the following example is not part of KronLinInv.
function mkCovSTAT(sigma::Array{Float64,1},nx::Integer,ny::Integer,nz::Integer,
corrlength::Array{Float64,1},kind::String)
function cgaussian(dist,corrlength)
if maximum(dist)==0.0
return 1.0
else
@assert(corrlength>0.0)
return exp.(-(dist./corrlength).^2)
end
end
function cexponential(dist,corrlength)
if maximum(dist)==0.0
return 1.0
else
@assert(corrlength>0.0)
return exp.(-(dist./corrlength))
end
end
npts = nx*ny*nz
x = [float(i) for i=1:nx]
y = [float(i) for i=1:ny]
z = [float(i) for i=1:nz]
covmat_x = zeros(nx,nx)
covmat_y = zeros(ny,ny)
covmat_z = zeros(nz,nz)
if kind=="gaussian"
calccovfun = cgaussian
elseif kind=="exponential"
calccovfun = cexponential
else
println("Error, no or wrong cov 'kind' specified")
exit()
end
for i=1:nx
covmat_x[i,:] .= sigma[1]^2 .*
calccovfun(sqrt.((x.-x[i]).^2),corrlength[1])
end
for i=1:ny
covmat_y[i,:] .= sigma[2]^2 .*
calccovfun(sqrt.(((y.-y[i])).^2),corrlength[2])
end
for i=1:nz
covmat_z[i,:] .= sigma[3]^2 .*
calccovfun(sqrt.(((z.-z[i])).^2),corrlength[3])
end
return covmat_x,covmat_y,covmat_z
end
# standard deviations
sigmaobs = [1.0, 0.1, 0.1] # notice the 1.0 as first element (2D problem)
sigmam = [1.0, 0.8, 0.8] # notice the 1.0 as first element (2D problem)
# correlation lengths
corlenobs = [0.0, 1.4, 1.4] # notice the 0.0 as first element (2D problem)
corlenm = [0.0, 2.5, 2.5] # notice the 0.0 as first element (2D problem)
# create the covariance matrices on observed data
Cd1,Cd2,Cd3 = mkCovSTAT(sigmaobs,nxobs,nyobs,nzobs,corlenobs,"gaussian")
# create the covariance matrices on model parameters
Cm1,Cm2,Cm3 = mkCovSTAT(sigmam,nx,ny,nz,corlenm,"gaussian")
# forward model operator
G1 = rand(nxobs,nx) # notice that nx=1 and nxobs=1 (2D problem)
G2 = rand(nyobs,ny)
G3 = rand(nzobs,nz)
Finally, a "true/reference" model, in order to compute some synthetic "observed" data and a prior model.
# create a reference model
refmod = rand(nx*ny*nz)
# create a prior model
mprior = copy(refmod) .+ 0.3*randn(length(refmod))
# create some "observed" data
dobs = kron(G1,kron(G2,G3)) * refmod
# add some noise to make it more realistic
dobs = dobs .+ 0.02.*randn(length(dobs))
432-element Vector{Float64}:
70.98836233316806
81.8523311692993
71.78662756848107
64.01484983571878
65.17205350312749
65.50174502937183
69.4726734799322
77.93153736094685
61.520455210387915
63.78925201847574
⋮
77.55265301781725
71.4455534962671
69.20371519966567
70.64012918320782
75.58595242655676
77.59390669788792
72.26788948777424
81.3856776881302
86.55071868869402
Now we have create a synthetic example to play with, which we can solve as shown in the following.
Solving the 2D problem
In order to solve the inverse problem using KronLinInv, we first need to compute the "factors" using the function kli_calcfactors
, which takes as inputs two struct
s containing the covariance matrices and the forward operators.
using InverseAlgos.KronLinInv
# create the covariance matrix structure
Covs = CovMats(Cd1,Cd2,Cd3,Cm1,Cm2,Cm3)
# forward model operator
Gfwd = FwdOps(G1,G2,G3)
# calculate the required factors
klifac = kli_calcfactors(Gfwd,Covs)
Now the inverse problem can be solved. We first compute the posterior mean and then a subset of the posterior covariance.
# calculate the posterior mean model
postm = kli_posteriormean(klifac,Gfwd,mprior,dobs)
# calculate the posterior covariance
npts = nx*ny*nz
astart, aend = 1,div(npts,3) # set of rows to be computed
bstart, bend = 1,div(npts,3) # set of columns to be computed
# compute the block of posterior covariance
postC = kli_blockposteriorcov(klifac,astart,aend,bstart,bend)
posteriormean_serial(): Serial version
posteriormean(): loop 1/3, 2 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 30 of 432; ETA: 0.005 min
posteriormean(): loop 1/3, 60 of 432; ETA: 0.002 min
posteriormean(): loop 1/3, 90 of 432; ETA: 0.001 min
posteriormean(): loop 1/3, 120 of 432; ETA: 0.001 min
posteriormean(): loop 1/3, 150 of 432; ETA: 0.001 min
posteriormean(): loop 1/3, 180 of 432; ETA: 0.001 min
posteriormean(): loop 1/3, 210 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 240 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 270 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 300 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 330 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 360 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 390 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 420 of 432; ETA: 0.0 min
posteriormean(): loop 2/3, 2 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 30 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 60 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 90 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 120 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 150 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 180 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 210 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 240 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 270 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 300 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 330 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 360 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 390 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 420 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 450 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 480 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 510 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 540 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 570 of 600; ETA: 0.0 min
posteriormean(): loop 2/3, 600 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 2 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 30 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 60 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 90 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 120 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 150 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 180 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 210 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 240 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 270 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 300 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 330 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 360 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 390 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 420 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 450 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 480 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 510 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 540 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 570 of 600; ETA: 0.0 min
posteriormean(): loop 3/3, 600 of 600; ETA: 0.0 min
blockpostcov_serial(): Serial version
blockpostcov(): 100 of 1 to 200
blockpostcov(): 200 of 1 to 200
3D example
An example of how to use the code for 3D problems is shown in the following. It follows closely the 3D example.
Creating a test problem
First, we create some input data to simulate a real problem.
# set the sizes of the problem
nx = 7
ny = 9
nz = 7
nxobs = 6
nyobs = 8
nzobs = 9
We then construct some covariance matrices for model parameters ($\mathbf{C}_{\rm{M}}^{\rm{x}} \, , \mathbf{C}_{\rm{M}}^{\rm{y}} \, , \mathbf{C}_{\rm{M}}^{\rm{z}}$) and observed data ($\mathbf{C}_{\rm{D}}^{\rm{x}} \, , \mathbf{C}_{\rm{D}}^{\rm{y}} \, , \mathbf{C}_{\rm{D}}^{\rm{z}}$). The forward relation (forward model) is created from three operators ($\mathbf{G}^{\rm{x}} \, , \mathbf{G}^{\rm{y}} \, , \mathbf{G}^{\rm{z}}$). Remark: the function mkCovSTAT
used in the following example is not part of KronLinInv.
function mkCovSTAT(sigma::Array{Float64,1},nx::Integer,ny::Integer,nz::Integer,
corrlength::Array{Float64,1},kind::String)
function cgaussian(dist,corrlength)
if maximum(dist)==0.0
return 1.0
else
@assert(corrlength>0.0)
return exp.(-(dist./corrlength).^2)
end
end
function cexponential(dist,corrlength)
if maximum(dist)==0.0
return 1.0
else
@assert(corrlength>0.0)
return exp.(-(dist./corrlength))
end
end
npts = nx*ny*nz
x = [float(i) for i=1:nx]
y = [float(i) for i=1:ny]
z = [float(i) for i=1:nz]
covmat_x = zeros(nx,nx)
covmat_y = zeros(ny,ny)
covmat_z = zeros(nz,nz)
if kind=="gaussian"
calccovfun = cgaussian
elseif kind=="exponential"
calccovfun = cexponential
else
println("Error, no or wrong cov 'kind' specified")
exit()
end
for i=1:nx
covmat_x[i,:] .= sigma[1]^2 .*
calccovfun(sqrt.((x.-x[i]).^2),corrlength[1])
end
for i=1:ny
covmat_y[i,:] .= sigma[2]^2 .*
calccovfun(sqrt.(((y.-y[i])).^2),corrlength[2])
end
for i=1:nz
covmat_z[i,:] .= sigma[3]^2 .*
calccovfun(sqrt.(((z.-z[i])).^2),corrlength[3])
end
return covmat_x,covmat_y,covmat_z
end
# standard deviations
sigmaobs = [0.1, 0.1, 0.1]
sigmam = [0.7, 0.8, 0.8]
# correlation lengths
corlenobs = [1.3, 1.4, 1.4]
corlenm = [2.5, 2.5, 2.5]
# create the covariance matrices on observed data
Cd1,Cd2,Cd3 = mkCovSTAT(sigmaobs,nxobs,nyobs,nzobs,corlenobs,"gaussian")
# create the covariance matrices on model parameters
Cm1,Cm2,Cm3 = mkCovSTAT(sigmam,nx,ny,nz,corlenm,"gaussian")
# Forward model operator
G1 = rand(nxobs,nx)
G2 = rand(nyobs,ny)
G3 = rand(nzobs,nz)
Finally, a "true/reference" model, in order to compute some synthetic "observed" data and a prior model.
# create a reference model
refmod = rand(nx*ny*nz)
# create a prior model
mprior = copy(refmod) .+ 0.3.*randn(length(refmod))
# create some "observed" data
dobs = kron(G1,kron(G2,G3)) * refmod
# add some noise to make it more realistic
dobs = dobs .+ 0.02.*randn(length(dobs))
432-element Vector{Float64}:
28.554825391325572
22.62721778567065
29.44901562928446
37.78338707663348
28.03910878407212
26.83647678045867
30.59582317530933
28.20921944302582
26.926585560445254
32.5931505392938
⋮
28.224344258363832
23.025048650962134
31.45243725447051
39.132902316768835
28.104972156245303
28.905607999295327
31.97508837086241
28.20336426741758
26.68559885299182
Now we have create a synthetic example to play with, which we can solve as shown in the following.
Solving the 3D problem
In order to solve the inverse problem using KronLinInv, we first need to compute the "factors" using the function kli_calcfactors
, which takes as inputs two struct
s containing the covariance matrices and the forward operators.
using InverseAlgos.KronLinInv
# create the covariance matrix structure
Covs = CovMats(Cd1,Cd2,Cd3,Cm1,Cm2,Cm3)
# forward model operator
Gfwd = FwdOps(G1,G2,G3)
# Calculate the required factors
klifac = kli_calcfactors(Gfwd,Covs)
Now the inverse problem can be solved. We first compute the posterior mean and then a subset of the posterior covariance.
# Calculate the posterior mean model
postm = kli_posteriormean(klifac,Gfwd,mprior,dobs)
# Calculate the posterior covariance
npts = nx*ny*nz
astart, aend = 1,div(npts,3) # set of rows to be computed
bstart, bend = 1,div(npts,3) # set of columns to be computed
# compute the block of posterior covariance
postC = kli_blockposteriorcov(klifac,astart,aend,bstart,bend)
posteriormean_serial(): Serial version
posteriormean(): loop 1/3, 2 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 22 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 44 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 66 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 88 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 110 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 132 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 154 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 176 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 198 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 220 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 242 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 264 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 286 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 308 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 330 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 352 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 374 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 396 of 432; ETA: 0.0 min
posteriormean(): loop 1/3, 418 of 432; ETA: 0.0 min
posteriormean(): loop 2/3, 2 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 22 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 44 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 66 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 88 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 110 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 132 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 154 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 176 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 198 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 220 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 242 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 264 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 286 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 308 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 330 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 352 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 374 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 396 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 418 of 441; ETA: 0.0 min
posteriormean(): loop 2/3, 440 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 2 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 22 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 44 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 66 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 88 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 110 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 132 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 154 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 176 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 198 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 220 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 242 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 264 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 286 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 308 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 330 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 352 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 374 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 396 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 418 of 441; ETA: 0.0 min
posteriormean(): loop 3/3, 440 of 441; ETA: 0.0 min
blockpostcov_serial(): Serial version
blockpostcov(): 100 of 1 to 147
Public API
InverseAlgos.KronLinInv
— ModuleA module to perform Kronecker-product-based linear inversion of geophysical (or other kinds of) data under Gaussian and separability assumptions. The code computes the posterior mean model and the posterior covariance matrix (or subsets of it) in an efficient manner (parallel algorithm) taking into account 3-D correlations both in the model parameters and in the observed data.
InverseAlgos.KronLinInv.FwdOps
— TypeFwdOps
A structure containing the three forward model matrices G1, G2, G3, where $\mathbf{G} = \mathbf{G_1} \otimes \mathbf{G_2} \otimes \mathbf{G_3}$
InverseAlgos.KronLinInv.CovMats
— TypeCovMats
A structure containing the six covariance matrices Cm1, Cm2, Cm3, Cd1, Cd2, Cd3
, where $\mathbf{C}_{\rm{M}} = \mathbf{C}_{\rm{M}}^{\rm{x}} \otimes \mathbf{C}_{\rm{M}}^{\rm{y}} \otimes \mathbf{C}_{\rm{M}}^{\rm{z}}$ and $\quad \mathbf{C}_{\rm{D}} = \mathbf{C}_{\rm{D}}^{\rm{x}} \otimes \mathbf{C}_{\rm{D}}^{\rm{y}} \otimes \mathbf{C}_{\rm{D}}^{\rm{z}}$
InverseAlgos.KronLinInv.KLIFactors
— TypeKLIFactors
A structure containing all the factors necessary to perform further calculations with KronLinInv, as, for instance, computations of the posterior mean model or the posterior covariance matrix. The structure includes:
U1, U2, U3
: $\mathbf{U}_1$, $\mathbf{U}_2$, $\mathbf{U}_3$ of $F_{\sf{A}}$invlambda
: $\big( \mathbf{I} + \mathbf{\Lambda}_1\! \otimes \! \mathbf{\Lambda}_2 \! \otimes\! \mathbf{\Lambda}_3 \big)^{-1}$ of $F_{\sf{B}}$iUCm1, iUCm2, iUCm3
: $\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}}$ of $F_{\sf{C}}$iUCmGtiCd1, iUCmGtiCd1, iUCmGtiCd1
: $\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}}(\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1}$, $\mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1}$ of $F_{\sf{D}}$
InverseAlgos.KronLinInv.kli_calcfactors
— Function kli_calcfactors(Gfwd::FwdOps,Covs::CovMats)
Computes the factors necessary to solve the inverse problem.
The factors are the ones to be stored to subsequently calculate posterior mean and covariance. First an eigen decomposition is performed, to get
\[ \mathbf{U}_1 \mathbf{\Lambda}_1 \mathbf{U}_1^{-1} = \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1} \mathbf{G}^{\rm{x}}\]
\[ \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{-1} = \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1} \mathbf{G}^{\rm{y}}\]
\[ \mathbf{U}_3 \mathbf{\Lambda}_3 \mathbf{U}_3^{-1} = \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1} \mathbf{G}^{\rm{z}} \]
The principal factors involved in the computation of the posterior covariance and mean are:
\[ F_{\sf{A}} = \mathbf{U}_1 \otimes \mathbf{U}_2 \otimes \mathbf{U}_3 \]
\[ F_{\sf{B}} = \big( \mathbf{I} + \mathbf{\Lambda}_1 \! \otimes \! \mathbf{\Lambda}_2 \! \otimes \! \mathbf{\Lambda}_3 \big)^{-1} \]
\[ F_{\sf{C}} = \mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} \otimes \mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} \otimes \mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} \]
\[ F_{\sf{D}} = \left( \mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1} \right) \! \otimes \left( \mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1} \right) \! \otimes \left( \mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1} \right)\]
Uses LAPACK.sygvd!(), see http://www.netlib.org/lapack/lug/node54.html. Reduces a real symmetric-definite generalized eigenvalue problem to the standard form. \n $B A z = \lambda z$ B = LLT C = LT A L z = L y
- A is symmetric
- B is symmetric, positive definite
Arguments
Gfwd
: aFwdOps
structure containing the three forward model matrices G1, G2 and G3, where $\mathbf{G} = \mathbf{G_1} \otimes \mathbf{G_2} \otimes \mathbf{G_3}$Covs
: aCovMats
structure containing the six covariance matrices $\mathbf{C}_{\rm{M}} = \mathbf{C}_{\rm{M}}^{\rm{x}} \otimes \mathbf{C}_{\rm{M}}^{\rm{y}} \otimes \mathbf{C}_{\rm{M}}^{\rm{z}}$ and $\mathbf{C}_{\rm{D}} = \mathbf{C}_{\rm{D}}^{\rm{x}} \otimes \mathbf{C}_{\rm{D}}^{\rm{y}} \otimes \mathbf{C}_{\rm{D}}^{\rm{z}}$
Returns
A
KLIFactors
structure containing all the "factors" necessary to perform further calculations with KronLinInv, as, for instance, computations of the posterior mean model or the posterior covariance matrix. The structure includes:U1, U2, U3
: $\mathbf{U}_1$, $\mathbf{U}_2$, $\mathbf{U}_3$ of $F_{\sf{A}}$invlambda
: $F_{\sf{B}}$iUCm1, iUCm2, iUCm3
: $\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}}$ of $F_{\sf{C}}$iUCmGtiCd1, iUCmGtiCd1, iUCmGtiCd1
: $\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}}(\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1}$, $\mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1}$ of $F_{\sf{D}}$
InverseAlgos.KronLinInv.kli_posteriormean
— Functionkli_posteriormean(klifac::KLIFactors,Gfwd::FwdOps,mprior::Array{Float64,1},
dobs::Array{Float64,1}; parall::Symbol=:serial)
Computes the posterior mean model for a distributed memory setup.
Arguments
klifac
: a structure containing the required "factors" previously computed with the functionkli_calcfactors()
. It includesU1, U2, U3
$\mathbf{U}_1$, $\mathbf{U}_2$, $\mathbf{U}_3$ of $F_{\sf{A}}$diaginvlambda
$F_{\sf{B}}$iUCmGtiCd1, iUCmGtiCd2, iUCmGtiCd3
$\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}}(\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1}$, $\mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1}$ of $F_{\sf{D}}$
FwdOps
: a structure containing the three forward matricesG1, G2, G3
$\mathbf{G} = \mathbf{G_1} \otimes \mathbf{G_2} \otimes \mathbf{G_3}$
mprior
: prior model (vector)dobs
: observed data (vector)parall
: type of parallelization: :serial, ;sharedmem, :distrmem
Returns
- The posterior mean model (vector)
InverseAlgos.KronLinInv.kli_blockposteriorcov
— Functionkli_blockpostcov(klifac::KLIFactors,astart::Int64,aend::Int64,
bstart::Int64,bend::Int64; parall::Symbol=:serial)
Computes a block of the posterior covariance, purely serial version.
Arguments
klifac
: a structure containing the required "factors" previously computed with the functionkli_calcfactors()
. It includes- U1,U2,U3 $\mathbf{U}_1$, $\mathbf{U}_2$, $\mathbf{U}_3$ of $F_{\sf{A}}$
- diaginvlambda $F_{\sf{B}}$
- iUCm1, iUCm2, iUCm3 $\mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}}$, $\mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}}$ of $F_{\sf{C}}$
Gfwd
: a structure containing the three forward model matrices G1,G2,G3, where $\mathbf{G} = \mathbf{G_1} \otimes \mathbf{G_2} \otimes \mathbf{G_3}$astart, aend
: indices of the first and last rowa of the requested blockbstart, bend
: indices of the first and last columns of the requested blockparall
: type of parallelization: :serial, ;sharedmem, :distrmem
Returns
- The requested block of the posterior covariance.